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Abstract

In this paper, we study the periodic solutions of difference equation xn+1 = xn−2xn−4 − 1,
n = 0, 1, ... where the initial conditions are real numbers. Moreover, we handle eventually
periodic solutions with period two. We also investigate the stability of this difference equation.
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1 Introduction

Difference equations or their systems have a huge interest among the researchers. This interest
related to applications of these equations or systems. There are many applications of difference
equations in many fields of science. There exist many articles related to our paper as follows:

In [8], Kent et al. studied the periodicity and boundedness of solutions of difference equation

xn+1 = xnxn−1 − 1.

They also investigated long term behaviors of solutions of related difference equation. Furthermore,
in [23], Wang et al. handled convergence of solutions of related difference equation. Moreover, in
[11], Liu et al. studied some properties of solutions of related difference equation.

In [9], Kent et al. examined the boundedness and periodicity of solutions of difference equation

xn+1 = xn−1xn−2 − 1.

In [10], Kent et al. studied the stability, periodicity and boundedness of solutions of difference
equation

xn+1 = xnxn−2 − 1.

In [7], Kent et al. handled the periodicity, asymptotic periodicity, unbounded solutions and
local stability of difference equation

xn+1 = xnxn−3 − 1.

In [18], Taşdemir et al. studied the stability, periodicity, bounded and unbounded solutions of
the difference equation

xn+1 = xn−1xn−3 − 1.
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Moreover, in [19], the authors investigated convergence of negative equilibrium of related difference
equation.

In [20], Taşdemir et al. considered the periodicity, asymptotic periodicity, stability of solutions
of difference equation

xn+1 = xn−2xn−3 − 1.

In [21], Taşdemir et al. handled the stability, periodicity and asymptotic periodic solutions of
difference equation

xn+1 = xn−1xn−4 − 1.

In [22], Taşdemir et al. investigated the periodicity, eventually periodicity and stability analysis
of difference equation

xn+1 = xn−3xn−4 − 1.

In this paper, we study the dynamics of solutions of the following difference equation

xn+1 = xn−2xn−4 − 1, n = 0, 1, ... (1.1)

where the initial conditions are real numbers. We especially investigate the stability and periodicity
of solutions of difference equation (1.1). We also overcome the eventually periodic solutions with
period two.

Note that, Eq.(1.1) be a member of the class of equations of the form

xn+1 = xn−lxn−k − 1, n = 0, 1, ... (1.2)

with special choices of l and k, where k, l ∈ N0 and l < k. In literature, there are many papers and
books related to difference equations (see [1]–[23]).

Now, we present some important definitions and theorems.

Definition 1.1. Let I be some interval of real numbers and let f : Ik+1 → I be a continuously
differentiable function. A difference equation of order (k + 1) is an equation of the form

xn+1 = f(xn, xn−1, · · · , xn−k), n = 0, 1, · · · . (1.3)

A solution of Eq.(1.3) is a sequence {xn}∞n=−k that satisfies Eq.(1.3) for all n ≥ −k. As a special case
of Eq.(1.3), for every set of initial conditions x0, x−1, x−2, x−3, x−4 ∈ I, the fifth order difference
equation

xn+1 = f(xn, xn−1, xn−2, xn−3, xn−4), n = 0, 1, · · · , (1.4)

has a unique solution {xn}∞n=−4.

Definition 1.2. A solution of Eq.(1.3) that is constant for all n ≥ −k is called an equilibrium
solution of Eq.(1.3). If

xn = x, for all n ≥ −k
is an equilibrium solution of Eq.(1.3), then x is called an equilibrium point, or simply an equilibrium
of Eq.(1.3). So a point x ∈ I is called an equilibrium point of Eq.(1.3) if

x = f (x, x, · · · , x) ,

that is,
xn = x for n ≥ −k

is a solution of Eq.(1.3).
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Definition 1.3. Suppose that the function f is continuously differentiable in some open neighbor-
hood of an equilibrium point x̄. Let

qi =
∂f

∂ui
(x̄, x̄, · · · , x̄) , for i = 0, 1, 2, · · · , k

denote the partial deriative of f (u0, u1, · · · , uk) with respect to ui evaluated at the equilibrium
point x̄ of Eq.(1.3).

The equation
zn+1 = q0zn + q1zn−1 + · · ·+ qkzn−k, k = 0, 1, · · · , (1.5)

is called the linearized equation of Eq.(1.3) about the equilibrium point x̄.

Definition 1.4. The equation

λk+1 − q0λ
k − q1λ

k−1 − · · · − qk−1λ− qk = 0 (1.6)

is called the characteristic equation of Eq.(1.5) about x̄.

Definition 1.5. Let x an equilibrium point of Eq.(1.3).

(a) An equilibrium point x of Eq.(1.3) is called locally stable if, for every ε > 0; there exists δ > 0
such that if {xn}∞n=−k is a solution of Eq.(1.3) with

|x−k − x|+ |x1−k − x|+ · · ·+ |x0 − x| < δ,

then
|xn − x| < ε, for all n ≥ −k.

(b) An equilibrium point x of Eq.(1.3) is called locally asymptotically stable if, it is locally stable,
and if in addition there exists γ > 0 such that if {xn}∞n=−k is a solution of Eq.(1.3) with

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < γ,

then we have
lim
n→∞

xn = x.

(c) An equilibrium point x of Eq.(1.3) is called a global attractor if, for every solution {xn}∞n=−k
of Eq.( 1.3), we have

lim
n→∞

xn = x.

(d) An equilibrium point x of Eq.(1.3) is called globally asymptotically stable if it is locally stable,
and a global attractor.

(e) An equilibrium point x of Eq.(1.3) is called unstable if it is not locally stable.

Theorem 1.6. Assume that the function F is a continuously differentiable function defined on
some open neighborhood of an equilibrium point x. Then the following statements are true:
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(a) When all the roots of Eq.(1.6) have absolute value less than one, then the equilibrium point x
of Eq.(1.3) is locally asymptotically stable. Moreover, in this here the equilibrium point x of
Eq.(1.3) is called sink.

(b) If at least one root of Eq.(2.3) has absolute value greater than one, then the equilibrium point
x of Eq.(1.3) is unstable.

Definition 1.7. A solution {xn}∞n=−k of Eq.(1.3) is called periodic with period p if there exists an
integer p ≥ 1 such that

xn+p = xn, for all n ≥ −k.

2 Stability analysis of Eq.(1.1)

In this section, we find the equilibrium points of Eq.(1.1). Then, we examine the characteristic
equation of Eq.(1.1). Lastly, we investigate the stability of Eq.(1.1).

Lemma 2.1. There are two equilibrium points of Eq.(1.1), namely,

x̄1 =
1 +
√

5

2
, x̄2 =

1−
√

5

2
. (2.1)

Proof. Let xn = x̄ for all n ≥ −4. Therefore, we get from Eq.(1.1)

x̄ = x̄ · x̄− 1.

q.e.d.

Lemma 2.2. Assume that x̄ is an equilibrium point of Eq.(1.1). Hence the linearized equation of
Eq.(1.1) is

zn+1 − x · zn−2 − x · zn−4 = 0. (2.2)

Proof. Let I be some interval of real numbers and let f : I5 → I be a continuously differentiable
function such that f is defined by

f (xn, xn−1, xn−2, xn−3, xn−4) = xn−2xn−4 − 1.

Then, we obtain the followings:

q0 =
∂f

∂xn
(x, x, x, x, x) = [0] (x, x, x, x, x) = 0,

q1 =
∂f

∂xn−1
(x, x, x, x, x) = [xn−4] (x, x, x, x, x) = 0,

q2 =
∂f

∂xn−2
(x, x, x, x, x) = [0] (x, x, x, x, x) = x,

q3 =
∂f

∂xn−3
(x, x, x, x, x) = [0] (x, x, x, x, x) = 0,

q4 =
∂f

∂xn−4
(x, x, x, x, x) = [xn−1] (x, x, x, x, x) = x̄.
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Therefore, the linearized equation associated with Eq.(1.1) about the equilibrium point x is

zn+1 = q0 · zn + q1 · zn−1 + q2 · zn−2 + q3 · zn−3 + q4 · zn−4

and so zn+1 − x · zn−2 − x · zn−4 = 0. q.e.d.

Lemma 2.3. The characteristic equation of Eq.(1.1) about its equilibrium point x is

λ5 − x · λ2 − x = 0. (2.3)

Now, we examine the stability of equilibrium points of Eq.(1.1).

Theorem 2.4. The positive equilibrium x̄1 of Eq.(1.1) is unstable.

Proof. We take (2.3) with x̄1 = 1+
√

5
2 . Then, we get the following characteristic equation

λ5 −

(
1 +
√

5

2

)
λ2 −

(
1 +
√

5

2

)
= 0. (2.4)

Thus, we obtain five roots of (2.4) as follows:

λ1 ≈ 1.35669,

λ2,3 ≈ −0.817695± 0.913305i,

λ4,5 ≈ 0.139352± 0.879896i.

Hence, we have,
|λ1| > |λ2,3| > 1 > |λ4,5| .

Consequently, the equilibrium x̄1 of Eq.(1.1) is unstable. q.e.d.

Theorem 2.5. The negative equilibrium x̄2 of Eq.(1.1) is unstable.

Proof. We consider (2.3) with x̄2 = 1−
√

5
2 . Then, we obtain the following characteristic equation

λ5 −

(
1−
√

5

2

)
λ2 −

(
1−
√

5

2

)
= 0. (2.5)

Hence, we have five roots of (2.5) as follows:

λ1 ≈ −1.054797,

λ2,3 ≈ −0.163078± 0.772937i,

λ4,5 ≈ 0.690472± 0.679856i.

Therefore, we get
|λ1| > 1 > |λ2,3| > |λ4,5| .

So, the equilibrium x̄2 of Eq.(1.1) is unstable. q.e.d.
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3 Periodic solutions of Eq.(1.1)

Now, we study the periodic solutions of Eq.(1.1) with period two and three.

Theorem 3.1. There are two periodic solutions of Eq.(1.1).

Proof. Let a, b be real numbers with a 6= b. Suppose that {x2n}∞n=−2 = a and {x2n−1}∞n=−1 = b.
Then, from Eq.(1.1), we obtain

b = a2 − 1, (3.1)

a = b2 − 1. (3.2)

From (3.1) and (3.2), we have the following four cases:

Case i. a = b = x̄1,

Case ii. a = b = x̄2,

Case iii. a = 0, b = −1,

Case iv. a = −1, b = 0.

Since the cases i. and ii. are trivial solutions, they are not periodic solutions. Other two cases are
periodic solutions with period two. q.e.d.

Theorem 3.2. Eq.(1.1) has eventually two periodic solutions as following forms:

Case i. {xn}∞n=−4 = {· · · , xN , xN+1, xN+2, xN+3, xN+4, 0,−1, 0,−1, · · · } , where xN+2xN = 1,
xN+3xN+1 = 0 and xN+4xN+2 = 1.

Case ii. {xn}∞n=−4 = {· · · , xN , xN+1, xN+2, xN+3, xN+4,−1, 0,−1, 0, · · · } , where xN+2xN = 0,
xN+4xN+2 = 0 and xN+3 = xN+1 = −1.

Proof. Firstly, we consider proof of Case i. Let {xn}∞n=−4 be a eventually two periodic solution of
Eq.(1.1). Hence, we have xN+5 = 0, xN+6 = −1, xN+7 = 0 and xN+8 = 0. Thus, we obtain the
followings:

xN+5 = xN+2xN − 1 = 0⇒ xN+2xN = 1,

xN+6 = xN+3xN+1 − 1 = −1⇒ xN+3xN+1 = 0,

xN+7 = xN+4xN+2 − 1 = 0⇒ xN+4xN+2 = 1,

xN+8 = xN+5xN+3 − 1 = −1⇒ xN+5xN+3 = 0.

This completes the proof of Case i. The proof of Case ii is similar to proof of Case i. q.e.d.

Theorem 3.3. There are no three periodic solutions of Eq.(1.1).

Proof. Proof. Let a, b, c be real numbers such that at least two of them are different. Assume that
{x3n}∞n=−1 = a, {x3n−1}∞n=−1 = b and {x3n−2}∞n=0 = c. Then, from Eq.(1.1), we get

a = a · c− 1, (3.3)

b = b · a− 1, (3.4)

c = c · b− 1. (3.5)
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From (3.3) - (3.5), we have the following two cases:

Case i. a = b = c = x̄1, (3.6)

Case ii. a = b = c = x̄2. (3.7)

Then, (3.6) and (3.7) are not three periodic solutions, because these are trivial solutions of Eq.(1.1).
This completes the proof. q.e.d.

4 Numerical simulations

In this section, we present two numerical examples which verifies our theoretical results.

Example 4.1. Consider Eq.(1.1) with the initial conditions x−4 = −1, x−3 = 0, x−2 = −1,
x−1 = 0 and x0 = −1. Then Eq.(1.1) has two periodic solution. The Figure 1 shows the first 80
terms of Eq.(1.1).

Figure 1. Plot of Eq.(1.1).

Example 4.2. Consider Eq.(1.1) with the initial conditions x−4 = − 15
112 , x−3 = 1

4 , x−2 = 28
3 ,

x−1 = 12 and x0 = 3
4 . Then Eq.(1.1) has the eventually periodic solution with period two. The

Figure 2 shows the first 80 terms of Eq.(1.1).

Figure 2. Plot of Eq.(1.1).
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